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ABSTRACT

In this paper, the steady, irrotational, subsonic flow of a gas around a

given profile is studied in the case of arbitrary space dimension greater than

two. We prove that the solution of this problem exists, is unique, and

depends continuously on the incoming flow. This extends the previous results

of Bers and of Finn and Gilbarq.
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SIGNIFICANCE AND EXPLANATION

It is clear that the study of the gas flow around a body moving at

subsonic speed is of primary importance in aerodynamics. Extensive studies

have been done on the problem of existence and uniqueness of steady

irrotational subsonic flow of a perfect gas past a given profile. Bers (1954)

treats the plane subsonic flow using the theory of quasianalytic functions.

Finn and Gilbarg (1957) deal with three dimensional flows with Mach number

less than 0.7. In this paper we-prove the existence and uniqueness of three

dimensional flow by using and improving a priori estimates obtained earlier by

several authors. Our results can also be extended to higher space

dimensions. Furthermore we allow the flow to be arbitrarily close to sonic

speed.
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THREE-DIMENSIONAL SUBSONIC FLOWS AND THEIR BOUNDARY

VALUE PROBLEMS EXTENDED TO HIGHER DIMENSIONS

Guang-Chang Dong

The existence and uniqueness of steady irrotational subsonic flow of a perfect gas

past a given profile has been studied extensively in the two dimensional case. In [1],

Bers proved the existence and uniqueness of plane subsonic flow around a given profile.

For higher space dimensions, few results have been previously obtained. Finn and '3llbarg

[2] proved existence and uniqueness in three dimensions provided the velocity was not too

large (the maximum Mach number less than 0.7).

In this paper we use the idea of [2] together with an improved a priori estimete

(extending the method of (4)) to prove the existence and uniqueness of the solution in the

three dimensional case. We also extend the result to higher dimensions.

In the following we always suppose the dimension of space is n(n > 11, and use the

summation convention
n

a•x = i ax
i=I

and denote the vector (x1 ...., xn) by x.

The steady irrotational gas flow in n dimensional space can be described by the

velocity potential ;(x), satisfying the equation

xi 1x

where p represents the density of gas, which is a given positive function of veluciy

q, where

q = Eu, u 3

i' u i

(1) can be written as

a 0
ij ax . Jx

where
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a. 06 + f- u Ut (3)aij =Pij q uiu iJ 0 (i J)

Because (1) and (2) are rotational invariant, the eigenvalues X.....,.n of the quadratic

form

a iji'iai sj

can be obtained by letting ul = q, u2 =...= Un =0, i.e.

p + p'q, X 2 = Xn = p

So that if

p + p'q > 0 (4)

at this point the quasilinear equation is of elliptic type, and the flow (1) is subsonic at

this point. If in some region Q we have

inf(p + p'q) > 0

then the flow (I) is a subsonic flow in P.

Assume that the function p = p(q) is a positive, three times continuous

differentiable functions, defined in the interval

0 4 q < q Lim

and assume that a number qc exists (we called it the critical velocity) 0 < qc q tim'

such that
d

+ ' 
=  

o(q) 
>  

n (0 < q < (c) 5
do c

For definiteness, assume that when q > qc, the left hand side of (4) is non-positive.

Hence (2) is subsonic if and only if 0 - q < qc" We also assume that

P'(0) = 0 . (6)

In cas dynamics, the density of a perfect gas is gizen by the dimensionless formula

o (I -
2  

Y (1 < y < 2, y is a constant)

so 1-
Y2)-1 1

o+ q= q1-
2 2

hence



/21
qc k/4' qtim

The flow is called subsonic when 0 ( q < qc' which agres with the discussion above.

The profile F is a bounded closed surface in n dimensional space (it can be some

'losed surface also). Assume that a constant T exists such that 0 < T0 ( 1 and

(2+T0 )
F c c (7)

The region outside F (not containing the point at infinity) is denoted by Q. We only

consider those satisfying the condition: any closed curve in R can be deformed into a

point without touching F.

The flow around F means that the solution of (1) in Q satisfies two conditions as

follows. The boundary condition

p-_ . 0 (N is the interior normal of 0 on F) (8)

and the condition of uniform flow at Q (called uniform incoming flow)

grad pIx- = u (u is a constant vector) • (9)

Usually for the problem of flow around a given profile we give the magnitude and

direction of incoming flow. Without loss of generality we can assume that the direction of

incoming fi-w is the positive x, axis (otherwise after an axis rotation we can reach this

situation), i.e.

u = (U, 0,...,0) the const U 0 0 is given * (10)

A slightly different problem is: Given the direction of incoming flow but not the

magnitude, i.e.

u (U, 0,...,0) U ) 0 is not given (11)

and given the maximum value of speed instead, i.e.

sop q - Q is given (12)

We shall study the existence and uniqueness, find the flow and other properties of the

solution of the above two kinis of flow pcoblem in the subsonic range, i.e. when

Q < CIC(13)

ji. Preliminary study of t ;. !l ear

Consider the following problem

-3-
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L(T) b (x) -y---- + b (x) = f(x) (x C 2, b b
±j axia i ax in jiI

r If (N is the interior normal of R on r) (1.2)

T1. = 0 (1.3)

where the given functions b i, bl, f c C (0)(), T0 E C(0)(r), and a positive constant a

exists such that

a2 4 b. 1 2 (1.4)
1 3 1) 1 0 1

Further conditions on bi,, bi, f are given below. Assuming that the solution of problems

(1.1), (1.2), (1.3) exists, and we deduce some a-priori estimates.

Assume that a fixed small positive number T such that T 4 T0  (the definition of

T see (7)) exists such that

Ib. (x) - b (-)l Klr (x C a) (1.5)
1) 1j x

lb, (x) - b .(y)l 4 K rT Ix-yl T (x, y C Q) (1.6)

Ibi1 K r'
1-
T (1.7)

S3 x

where the constants K1, K2 1 ... depend on 0, T, r only. Moreover, assume f is a

bounded function satisfying f 4 K ma If r- Tfi(Kmax Iflr
- n-T (1.8)

4- x

where

rx = d(x, r), rxy min(r x , r ) (1.9)

d(x, r) is the distance between x and r. We have

Lemma 1.

ITI 4 K5 (max IT I + max IfI . (1. o)
rQ

Proof. Let

max ITo0 I + max Ifi (1.11)

-4-



The uniqueness of the solution of (1.1), (1.2), (1.3) is easily deduced from the

maximum orinciple (5]. Thus for T
O 
= 0 we have Y = 0, and in this case (1.10) is true.

When T
0 4 0, let

2
L ( ) = bi(-1 1xiaxj

R x x (1.13)

B.. () is the algebraic complement in the matrix (b.. ()). We have

2-n- -n-

L(R 2) = j (n-2+ 2 (1.14)

When R > K 6, where K6 is a sufficiently large constant, from (1.5), (1.7), (1.8),

(1.14) we have

T T

L(R 2) = - (n-2+ -)R + 0(R 
- n -

) > 0 (1.15)

VO 2 2

Without loss of generality we can assume that the origin lies inside r, then

min R > 0. Take (O,T,r) comparatively large, by using (1.5), (1.7), (1.13) we have

-o-'r4 - eR c'b 4
=  

.6

L(R 
a
) = a(n+2)R b ijBij ()xkBjh(=)Xh _ aRi b 1] (1.16)

- oR iB ik(-)xk 0 K(I

From (1.15), (1.16) we can select a constant KS such that

2 . I2 -

L(R + K R- _ 0 > 0 (x E 2)

Let

2-n-
=2 =T + T (R + KR 8

Prom (1.1), (1.17), (1.1) we have

L(TI) < 0, L(T 2 ) > 0 (.19)

. . . --- - I I 1l 2



From (1.3) we have TI( ) 0, hence min T 0, this minimum can only be taken at

2
or on P by (1.19). Similarly ma 2 

)  
,and thi..s maximum. can be taken at or

on r. Hence we have four cases as follows.

Case 1. min TI = (P 0) < 0, P0 C r; max 2 2 72(Q 0) > 0, Q0 c r

Extend the method of (6] to prove that (1.10) is true. Secause P cC , there

exists a positive constant y = Y(P), such that for any point P £ P we can draw an

exterior tangent sphere with radius y which lies entirely inside SI except point P.

Draw the exterior tangent sphere with radius y at P0. denote its center by PI.

Consider the function 2-hPP 2

T3 (P) = T'1 (P) - mi nI - k
T 0

(e I -e-h2 ) (P C 5) (1.20)

where k, h are positive constants we may choose at our disposal. Take h - h(o) large

enough, from (1.17), (1.20) we have

L(T ) < 0, 1 PP < y (1.21)
3 2 1;

From (1.20) we have

Y3 ) 0, when pp = > and 3 (P0) = 0 (1.22)

If

' > 0 when PP=
2  

(1.23)
3 1 2

is true, then from (1.21), (1.22), (1.23) we see that min T < 0 when < PP ( y can
3 2 1

not he true, hence min .3 = T3 (P0) = 0. From (1.2), (1.1A), (1.2n) we have

IT 2-n- 2
3-P =T(p0  - ' -(R + K8 R-d)p - 2khV0e

-h y  ) 0 (1.24)
n N8 I 0

Pick the constant k' so that

2 2-n-- -
2yK.)he > 1 + maxl -(R 2-KR )I

then (1.24) can not he true when we take K = Kn, hence (1.23) can not be true, in other



words, we have P2  satisfies PP2 = such that F(P) < 0. rom (1.20) we have
12 2 T3(2 2

T (P2) - min TI K T, IL 4 d(P, P) 2 " (1.25)
1 2 5 1 10 '2 2 0 2

Similarly there exists a Q2  satisfying

max_ T T2 - 2 (Q2 ) K 1 To, -1 4 d(Q 2 ,Q0 ) . (1.26)

Because of (1.6) we can apply Harnack's inequality [7] to the nonnegative function

T, - min T, and obtain

I (Q2
) 

- min T e K [T (P2 ) - min T + maxL(T )]. (1.27)
1 2 - 1 12 1 2 - 1 - 1

Combine (1.11), (1.18), (1.25), (1.27) we have

T 1 (Q 2 ) - min T 1 K1 3
0  

. (1.28)

From (1.18), (1.26), (1.28) we have

ma T - min T c max T 2 - min T 1 (K11 + K 13)
0

From (1.3) we have max T ) 0, min T 4 0, so combining the above expression and (1.11) we

obtain (1.10).

Case 2. min T, V ( ) = 0, max T2 
=

2 (Q0 ) 
> 

0, Q0 E f

By lemma 2, there exists positive constants R0 (,T,r) and K14, K15  such that the

Harnack inequality for the positive function R
2
nf, (the definition of R see (1.13))

for any R1  R0  holds:

msx (R 2-nT I )  K14 min (R 2-nT ) + K15 maxlfl (1.29)
R=R0  R=R I

Proof of (1.29) see lemma 2. From (1.29) we have

I . n-2 Max 2-n T K4n-2 max 2-n n5 2 0 -
max V R Ma(R 1V 14 R max(R 1 )K 15R 0
R=R 0  R=R 0 R=R 1

0 0 1 (1 *30)

R, n-2
K4 R max T1 + K15R

2 0

4 R=R 1

From (1.19) and T 21 = T11- = 
0, combining -th (1.18) we have

max TI 1 max T2  ma. 2 max T + K16 T0 (1.31)

R=R1 R=R1 R=R0 R=R0

so combining (1.30), (1.31) we have

-7-



,R, n-2 R0 n-2 n-2 ]
[1 - K(4[-l ) max v/1 K-- K)

14= RK14(R K16 + R0 K5
1 R-R 01

R 1
Take R, such that K 14(R = we have

1max T 1 K17. (1.32)
R=R 0

(1.32) is similar to (1.25). We can get (1.26), (1.27), (1.28), (1.10) by tn., ir.iar

process as in case 1.

Case 3. min T '(P ) < O(P E r), max T2 
= 2 1 ) = 0.1 1 0 0 - 2 2

Obtaining (1.10) is similar to case 2.

Case 4. min P = 0 = I (-), max T2 = 0 = 2(=).

41 0
From (1.18) we have Y0 = 0, contrary to the hypothesis.

Lemma 1 is thus proved.

Lemma 2. Let

1I > 0 (x E 2) (1.33)

Prove that (1.29) is true.

Proof. Assume that the region R ) R18 (the definitior, or R se (1.13)) lies in

S. Without loss of generality we can assume

maxlfl 1 1.34
b.,(-) flij(1 35)

13 i

Otherwise after a linear change of independent variables and multiplying the unknown

function by a suitable constant we get (1.34) and (1.35). Hience R lxi. Apply the

inversion transformation
x.

X.( = 1,2,..,n) (1.3t)

and let

2-n- -(= 2-n2v
I R - R ,v (1.37)

(1.1) becomes

L+v B + By = F (IXI < _!i=~v B i j X iX j B IX i i is

Notice that the matrix Bi. is not the same as in (1.23). From (1.4) and (1.16) we see

-8-



that Bi3  still satisfies the uniform ellipticity condition and (1.33) becomes

v > 0 . (1.38)

From (1.1), (1.3), (1.5), (1.7), (1.15), (1.18), (1.35), (1.36), (1.37) we have

Bi 6.i + 0(IXI ) (1.39)

B. = 0 (IX) ) (1.401
T -

2 2=- ( - 2+ £)IXi2 2 0 (lx x - ) (1.41)

F =- (n - 2 + -!)IXI 2 0 (lXI )- 2  
(1.42)

2 2

v 
= 

0 (IXi 
2- n

) (1.43)

We use the generalized maximum principle in [8): When the coefficients satisfy

(1.39), (1.40), (1.41), w C C(2 , L(w) > 0, w = 0 (I 2 n) in 0 < IXI < K 9, then w

can not attain a positive maximum value in 0 IXi < K19 where w(0) is defined by

lim w (X).
8.0 T

From (1.39) - (1.43) we can take v + 21X)
2  

to be the function w by taking K19

suitably. Hence v is bounded above and moreover v is bounded by combining with (1.38).

Then from the result of [81 we get that v(0) exists and

lim v (X) = v(0) (1.44)

X+0
Take positive constant K20 such that the following relations are true when

0 < IXI < K2 0 :
2

L(v) = F < 0, L(v + 21XI ) > 0 1.45)

L(1) = B < 0, L(I + 21XI
2 )  

> 0 1.46)

We need to determine continuous functions K+(X, Y), K(X, Y) in the ranqe

lXI % < 0, Y = K 20 (XtY) satisfying the following three relations:

i. (K ) 0, L(K I 0 (0 < IXI < K, ) (1.47)

lim I K ±(X, Y)g(Y)dS 
=  

(Y 1.48)
X-Y

0

where q(X) is any continuous function and Y0  is any fixed point satisfying IYoi K20.

-9-



iii. There exists constants K2 1, K 2 2  such that
K20

K+(X, Y) > K2 1, K_(X, Y) K ('lX - lII = K3) . (1.49)
+- 22 3'20

If Ke(X, Y), K_(X, Y) exist, then combine (1.44), (1.45), (1.47), (1.48), (1.49),

and apply the method of [51, (c.f. in 4 of [5]) which extends theorem 1 to the

inhomogeneous equations. This is the result that we need. Hence, positive constants K2 3 ,

K2 4, K25 exist such that
-1 )+ l 20

K23v(0) - K24 v(X) k v(0) + K25 lxi -) , (1.50)

(1.29) follows from (1.34), (1.37), (1.50).

Wc can construct K+ and K_ by only altering the method of [5] a little as follows.

Let

2 _ 25[, ( SX1  i ( j - y ) 2
H = (K2 -X )(8*.(v)(X Yi)(X 2

20 1i 2

where B3* are the alqebraic complements of 3ij. Take K_ f_(H), then

L(K ) = B (X)HX. H X.(f" + Af') + Bf_

where

A = Bij (X)Hxix + BiHXi ]/[Bij(X)HxiHxI

Apply the estimate method of (5] (the method of obtaining (30) in it) and (1.6),

(1.39) and T t-- 1 -- -1

q. 0 (lxI ) 0 (IX-Yj - K 2012I

deduced from (1.40), we have

IA K (IX-YI
n- 1+ T 

+ IX-yInlX-yj - K22

And then determining f etc. (these steps are similar to [5I), at last we get K_(X, Y)

sat isfy inq (1.47 ), (1.4R , (1.4 )) .,

Through the transformation K+ (I + 2 XI 2)K., (1.47) becomes

L*(K*)

where

L*(v) = R V + B*v + B*v*() RVXiX. i x i

Applvinu (1.46) we have
T

13* = r(1 + 21XI2 )/(1 + 21xI
2 )  

> 0

-10-



Let K+ - f+ (H). the selection of f+ is similar to [51. The proof of the existence

of K' such that K' satisfying (1.47), (1.48), (1.49) is similar to K. Hence the

proof of lemma 2 is finished.

Lemma 3. We have

I'I(K min(1, r 2-n(maxl'y I + maxIfl) (.1
27 m X r 0

under the conditions (1.4), (1.5), (1.6), (1.7), (1.8).

Proof. Because of lemma 1, we only need to prove the validity of (1.51) when rx

large enough. From (1.13), (1.14) when R > K 28 (K 28  large enough) we have

2-n- -1 n

L(R 2- -(n - -)R 2+ 0 (R -- ) < 0
K f0 2 2

Hence the function
2-n- 2-n- -1

K R2-n -R 2 MK2-n -K 2 ) F0 T(.2
5 28 28

can not take on a negative minimum value in K 2 9 < R < -. From (1.3), (1.10) we see that

when R -= and R = K28 (1.52) is nonnegative, hence (1.52) is nonnegative, in

K 28 R 4 . This proves the lemma.

Denote the k'th order derivatives of T' by D (k . When V c C M(0) or

C (kT) Q),let

Mm M'( = lub r m+kID(k) P(x)I (1.53)

Mm ('4!)M = lub rm 2 IT) (k) (x) - D (k(Y)I/IX..YIT (1.54)
mx~k+T xy

where m is a nonnegative integral. For the meaninq of symbols rx, rx see (1.9). The

symbol of luh in (1.53), (1.54) means first to take upper bound for all k's order

derivatives. Let
k

'(I M (Y4), HI'I = '4! + M (IF)
mk , m k M, k+T mk m k+T

i~=f



When 'P(x) C c(k)(Q) and TI m,k is finite, denote by '(x) c Cm,k. Similarly we define

CCM,k+T"

Lemma 4. Assume that (1.4), (1.6), (1.7) and

lb (x) - bi(y)l < K - -I-T (1.55)

29lx-YI rxy.

are valid, and assume that

fcc *C(1.56)nt

Let T c C (2+T)((0) be the solution of (1.1), (1.2), (1.3) and T £ Cn_2,0, then we have

Cn-2,2+t, and

IT(_2,2+T  K30 [Mn_2, 0 (F) + tfln,T1 (1.57)

Proof. From the interior estimate [9] we obtain (1.57).

(k)

Consider a bounded region 0 satisfying R o R0 D . when IF C C () 0 ) o

E C (k+T) (Q0 ),  let

Mk (T) - lub ID(k),(x)I, M k+T() - lub JD(k)x) - D (y)1/Ix-yl
x 0  x,~ 0

k

IIIk MIT0 T k+x T k + 1+TT

When P(x) 6 c(k)Q 0 ) and I'Ik  is finite, denote by T(x) c C 
k
, similarly we define

00
C
k+T

Concernng the function '0 defined on r, let

O(OU k - lub lubID (h)'P ( H 0ok+ T = lOPk + lub ID ()P (x)
h-k xc 0 0 x,yF 0

- D (k)q,0(y)U / tx-yI

where in lub the DkT0 (x) and D(k) 0 (y) restrict to the derivatives of the same

parameter.

Lemma 5. Apart from the hypothesis of lemma 4, let bij bi, f, Y0 satisfy the following

conditions

T
lbij x) - b ij(y)l f K3 1 x-yI ix, y 0) (1.58)

Ibi x) - b (y)l % K 32IxyI (1.59)

f E C 0 
60

-12-
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(2+T)
And let T C (9) be the solution of (1.1), (1.2), (1.3), then we have T c C21 T ,

and

I 12+ K 33[M0 (f) + Ifl + py al ] . (1.62)

Proof. See (10].

Let

(') - lub max(l, rm+k )ID (k)(x)I
x £0

m+k+T W I F) ( k ) T
M + lub max(l, r )ID '(x) - D (y)I/Ix-yI
m , %+T X

k

I m,k J M'j (, 1 Hm, k+T ' Imk + MmI+t( )

Summing lemmas 3, 4, 5 up, we have

Lemma 6. Under the conditions (1.4), (1.5), (1.6), (1.7), (1.8), (1.55), (1.56), (1.58),

(2)
(1.59), (1.60), (1.61) let T E: C (0) be the solution of (1.1), (1.2), (1.3), we have

Tn2,2+T  K34(fln,T + ' 1 ) (1.63)

Theorem 1. If the conditions of lemma 6 are satisfied then the solution

T E C (0)( ) n C (2)() of (1.1), (1.2), (1.3) exists and is unique. T c C(2+T) (), and

satisfies the estimate (1.63).

Proof. The uniqueness of the solution follows directly from maximum principle. The

existence of the solution can be obtained by applying the continuity method, i.e. to solve

the equation with parameter

[(I1-9)L + OL]T = Of (0 r 8 - 1) (1.64)

with boundary conditions (1.2), (1.3), where the definition of operator L is defined by

(1.12). When 9 = 0, through a linear transformation, the equation (1.64), (1.2), (1.3)

becomes the Laplace equation in an exterior domain with oblique derivative aiven. The

existence of a solution T and 'yE C (2+T) () ran be obtained bv the method of integral

equations, see [5). Applying lemma 6 to extend the solution by increasino the parameter

i inti 9 = : 1.

The theorem is thus proved.

-13



§2. The existence of solution around a given profile.

Theorem 2. Te solution of problem (1), (S), (9), (11), (12), (13) exists.
Q+q

Proof. First we alter the function p a little as follows: Take Q 2 - where

for the definition of qc, Q see (5), (12). Let

s = s(q) = *{I+th[(Q-Q)(2q-Q-Q)]/E2(q-Q)(Q-q)]1

then s(q) c C when Q < q 4 Q and increases monotonously, and

s(Q) : s'(Q) s"(Q) ... s'(Q) = s"(Q) =...= O,s(Q) = 1

Let

(0 4 q 4 Q)

P= p(1s) + es (Q < q <Q) (2.1)

e(Q ( q < =)

where the constant e = max p, it is easy to see that the smoothness of ; is the same

- (3) Qq<
as p, i.e. C C , and O > 0. Applying (5) we have

P + p'q (o+p'q)(1-s) + es + q(e-p)s' > 0 (Q 4 q (Q) (2.2)

Consider the equation

ax .( ax. 0

or
- 2

a (D ) = 012.3)
ij ax.ax.

where

a.. (O) = p6.. + u.uq 13

The eiqenvalues of its correspondent quadratic form aij (M)aa i are

A, = 0 + P'q, X2 =.= Xn = P

From (2.2) we see that all eiqenvalues are positive, i.e. when 0 < q < (2.3) is always

an elliptic equation, and a positive constant o = o(Q) exists such that

2 - 1 2
i ij i j 0 i

Next we prove that the solution of (2.3), (9), (9), (11), (12), (13) exists. From

(13) and (2.1) we see that it also is the solution of (1), (8), (9), (11), (12), (13).
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Hence concerning the proof of theorem 2, without loss of generality we can assume the

quasilinear equation (2) is uniformly elliptic when 0 4 q i , i.e. there has positive

constant a = o(Q) such that
1 2

CO r a- (D.)a a E .2 (2.4)

Let the function p(x) satisfy

SP C ( +T (a+r) (2.5)

D p(=)- (U, 0,...,0)

[o (X) - Ux 1] _ 0 (2.6)

ID P x) - Do-()I C 1r x

IDO(x) - Do(y)I 4 C2 min(l, r-T)lx-yl
T

2xy
where

w = T (Q,r) 4 T 0 (the definition of T see (7)) (2.7)

is a positive constant which shall be determined later, U is a positive constant not to

be fixed, (for the meaning of rx, rxy see (1.9)), C1 , C2  are positive constants. The

norm of o(x) is defined by

NO! - )VI + maxl-Ux) + inf C1 + inf C

It is easy to see all functions form a Banach space E.

We wish to find the solution of the following equations:
2

a M(D) 3x = 0 (2.8)

TN r 
= 

-Cos(N, xi)lr (2.9)

T1 = 0 (2.10)

Let

O(x) =Q[V(x) + xI]/maxlgrad[(x) + x11 (0 1 0 & 1) (2.11)

where the definition of Q see (12).

By theorem 1 we have (D c E, hence a functional in E is defined as follows

rT( , R) (0 & 0 1 1) (2.12)
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Now use Leray-Schauder degree theory [I ] to prove that for any 0 < 6 4 1 the

solution of functional equation

W0-T( p, 0) - 0 (2.13)

exists. By theorem 1 and (2.8), (2.9), (2.10), (2.11) we see that when 0 = 1 the

solution of (2.12) is a solution of (1), (8), (9), (11), (12), (13).

Let us verify the three conditions of Leray-Schauder degree theory.

i. From theorem 1 we have

IT n-2,2+T C K341 I (2.14)

Hence T is completely continuous. T is also closed, i.e. when Pk c E, e E and

- I 0 (k + -) the corresponding solutions satisfying 10k - 01 + 0. If this is

not true, i.e. there is a subsequence (k') and positive constant S such that

0k - 01 ) 6 (2.15)

When k' is lare, from (2.14) we have

ITk' In-2,2+-r K 34(1 10)

hence {T ) is compact in I ... I 1 i.e. there exist T. and a subsequence
kn-2,2 +-

2
Fk" of {kI such that

NY - .+0*n-2,2 +-
2

2

From a (De, ) -- = 0 taking limits we have
i9 k" 3xiax.

a2

aij(D ax i =

Similarly we have

5 - r - -cos(N, xl)1 r ,  "*I = 0

Hence from the uniQueness of the solution of (2.8), (2.9), (2.10) we have T* = T, hence

10 k - 01 - 0

This contradicts to (?.1%), therefore T is closed.

From (2.11) we see that T is continuous uniformly in 9, hence the deqree of (2.13)

ij in'nenlent of 1.

ii. Wien A = 0, t = 0, i.e. (2.13) has only the solution O = 0. Therefore, the

'elqr"e of (2.13) is o 'pii to 1.



iii. To prove the solution of (2.13) is bounded in E, in other words, to prove that

the solution of (1), (8), (9), (11) and

max q = OQ (0 4 0 4 1) (2.16)

is bounded in E, which shall be proved in the following two sections, first notice that

from (2.16) we have

maxq Q (2.17)

§3. The interior and boundary estimates of solution.

Let pC E satisfy (1), (8), (9), (11), (2.17). Consider (2) as a linear equation in

from (2.5) and the Schauder estimate (notice that we have (7) and (2.7)) we have

'P E C (3+T) (Q) n C(2+T)(a+)

Differentiate (1) about xh we have

(a - = 0 (u is the abbreviation of =hu) (3.1)7 i 3xa
where the definition of aij see (3).

Assume the sphere Ix-x 01 p lies in R and 0 < 6 < 1. Let

i 1 x-x o 0 1 4 1 l( -6 )

C(x) = ; Y L- x 6) (- 1 0-6) 4 Ix-xo 1 : (3.2)

0 Ix-x I >

Multiply (3.1) by 2(x)u and integrate, we have

f2 aiju u dx = -2fai uu x dx
x3 1 3

From this formula and (2.4) we have

f 2 (grad u)2dx 4 L<f[€c2(grad u)
2 
+ u2 (grad )2 ]dx

In this and the following sections the constants L1 , L2,... depend on Q, r only. £ is

an arbitrary positive constant. Take CL 1 = we have
12

f 2 (grad u)
2 
dx L2fu

2
(grad )2 dx (3.3)

Take 0 = - from (3.2), (3.3), (2.17) we have
2

2 n-2
f (grad u) dx 4 L3n- * (3.4)
Ix-xol•

0-2

-17-



I-7
Let n be a constant. Multiply (3.1) by the function

C (x) (u-r)) (u ) T)

(u < i)

and integrate, we obtain similarly

f C
2

(grad u) 2dx I L4 f (u-n)2 (grad ) 2dx (3.5)
U)b uTOn

We denote the sets u(x) < n in sphere Ix-x0i 4 p by An,t , B n, respectively.

From (3.2), (3.5) we have

2 i 2f (grad u) dx 4 L 5 mes A n - max u(x) - n] (3.6)

A,-w() xeA n,w

Similarly we have

(grad u)
2 
dx 4 L6 mes B ,U (1 2xmax 1 2-u(x) (3.7)

6 ,) TidI O x (ti

From (3.4), (3.6), (3.7) and applying the result of [3]: There exist constants L, and

T 
= 

T (Q,r) (0 < T1 < 1) such that for any x, y c S we have
1 1 11

Iu(x) - u(y)l 4 L7rxy 1x-y1 (3.8)

Note. In (3) the inequality (3.8) is proved under the restriction Ix-yI 4 Lsrxy. When

Ix-yl > Lsrxy , the validity of (3.8) is true by (2.17).

We now turn to the boundary estimate. From (7) we see that there is a local

parametric expression for a little part of 1
(2-T 0

xi ' xi 1 1 I ,, n i C

in the neighborhood of any point P0 6 r.

Choose variables () suitably such that inside the small sphere w withChooe vrla~es (i2+t0)n

center P0 we have C C( , on point P0 (C
, 

1 n) for a unit orthogonal axis

system, and n coincides with the direction of normal on w I r. The method for choosingn

is as follows: First take ,. such that they form the unit orthogonal axis

system on P0 . Denote

cos(N, x11 = AI,.,ni) !i = .. n)

on r. Then the inverse function .. of
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x= x i(El 'n + n 1 ) (  + aCn'&n-1 + On-1n )dl ... don

satisfies all our requirements.

Let

CL (3.9)Ujk axi ax i

i i
we have

ackiro = k (j, k- 1,...,n) (3.10)

a n 0 (j - 1,...,n-1) , (3.11)

From (3.9) we have

2 2 - - ( a'pq fEui " u ajUj (u . "
)I ik

Equation (1) is the Euler equation of the variation problem 6 f F(q)dx 0 where

F(q) = f pqdq. Under the transformation we have alx .... xn

6 f F(q)jd& = 0 f( = D(xI ..... n

or

-( -p.u.) = 0 (3.12)
.13 13

Differentiate (3.12) with respect to &h we have

a ah
a(is a + B') 0 (3.13)

where

ij = p i -q ikLjmUkUm (3.14)

a akm -

i = )puj + 2J'qaij - ujuku m  (3.15)

From (3.10), (3.14) we have

(p6i+ - uiU ) . (3.16)
P0 1 q iIP 0

Hence when the radius of w is sufficiently small, form (2.4), (3.16) we have
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a2 iXo EX a 2x (3.17)
2 £ ij ± j a i

Denote the image of w, w n S1, w n r by W, 2, T. (8) becomes

Un 0 (3.18)

Let C(&, P, 0) be the function defined by (3.3) with x, x0  changing to ' 0

restrict in this case that the sphere with center &0' radius W lies entirely inside

w. Multiply (3.13) by

21u h - n) (uh > n)

0 (u h < n)

and integrate, but in case h = n restrict n ) 0. Integrating by parts we have
auh a 2-

(I - j 3&1 ~~- + 3& u-- h~(u - n)]d = 0 .(3.19)

wn {uh> T)}

Since there is no surface integral in (3.19), we only need to check the case i = n.

When h = n, on F by (3.18) we have u - n ( 0. When h # n, j = n from (3.18) we have
n

= a =0 . When h 9 n, j 0 n, from (3.11), (3.14) we have an 0. And

the bi defined by (3.15) has the property b.I - 0 when h # n, the reason is, from
r

3a

(3.11) we have anj = 0 (j # n), and this induces 0 in the case j #

h n, combine with (3.18) we have b.1  - 0.

From (3.19) by applying Schwarz inequality and (3.17) we have

(grad - )2d& - L9 mes(5 n A 1 max () - ,12 + 1) .(3.20)9 Akuh 0, ()2 AUh

Define

,.. =(3-21)
0 (h n)

1-
in the part of G outside 12, then apply (3.18) we have uh C C -) w (-). From

(3.20), (3.21) we have
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2 12f , U(grad Uh )2d& 1 2L9 mes A ,(- 2 max [u h 4 I}

A nIa 21- h AT

(restrict n > 0 when h - n).

By the same process we can obtain two formulas similar to (3.4), (3.7).

From the result of [3] we have, u(h 
= 

1,...,n) satisfy a Holder condition in w

i.e. there exist LIO and T 2(Q, 0) (0 < T2  1 1) such that for any x, y c Q n w we have

Iu(x) - u(y) L 10 x-y 2 (3.22)

J4. Estimate of solution in the neighborhood of -.

Assume that the solution of (1), (8), (9), (11), (2.17) satisfies

0CC (2)(0) n CM (g + r) . (4.1)

When P E E, from (2.5) and applying the Schauder interior estimate twice we have

€ C C (3 T)() n C(
1 
(f2 + r)

Let 0 8 I, 0 < 81 < 1, X is a positive constant, R, R are large positive

numbers. Let x

Iix R(1+6) 4 jxl (16)I 1l-

(x) , R) = R X (7+0) X x R ( JxJ ( R(1+6) (4.2)

OR

SR)'(1-81 )X R-I R(1-6 ) ( lxi 4 R

oR

n

Using this C we can obtain (3.3) also. When X < 1 - 2 from (2.17) and (4.2) we see

that (3.3) is also true when = C(x, R, -).

Denote the inversion point of x about the unit sphere by X, then (3.3) becomes
j r2 i 4-2n(Axu)2dX < L2 f u2 1X4-2n(Ax)2dX (4.3)

Take X - 2 - n, 9 = 1, R = and let - = W, from (4.2) and (4.3) we have
R

2 n-2Ix P (gradx U) dX r (4.4)

Similarly we have 2

(grad u)2dX L 2 res A - max (u(X) - 2 4.5)
A -1 (0W) XcArl,u (1+u) rlI
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f (grad" u) 2dX L13 mes B I max [u(X) - T1
2  

(4.6)
B,( 1 n, W (ep) 2 

XcB

where A , B are the sets of u(X) > n in JXl 4 U respectively.

It is easy to prove that u(X) W in a neighborhood of the origin (which includes
2

the origin). From (2.17), (4.4), (4.5), (4.6) and applying the result of (3), we see that

constants a 
= 

o(Q, ) > 0 and L 14  exist such that in the neighborhood of the origin the

followinq inequality is valid:

Iu(X) - ul L i41XI (4.7)

where ulX=0 = ul = u(-) is defined from (11). Let u(x) - u(-) = v(x), then (4.7)

becomes
becomes 

lIv(x)l 4 L 14 1x1 -
" 

4814.8

Apply a linear transformation x = x(y) such that the matrix (a. ) becomes an
ij x=-

unit matrix. Then (3.1) becomes

(c -) = 0 (4.9)
v. i i ay.i

where c-() - 5.. Combining with (4.8) we have

Ic ij(Y) - ij I L 15IyI
-
a (4.10)

2

Multiply (4.9) by C v and integrate to obtain

f C2(grad v)2dy < L16 r v2(grad C)2dy (4.11)

by us.nq the same method as (3.3) was obtained, where (y) = (y, R, R) is determined

from (4.2) by changing x to v. Take 8 satisfying

n0 <I , 6 ' (4.12)
2

n-
In (4.2) take X = 1 - n + 1, = =, B = 1, substituting in (4.11) and applying (4.8) we

have

f(r) j f lyl 2X(rad v)
2
dy 4 L17r (4.13)

lyt r

Estimate hv extenlinq the method of (41. Denote the unit spherical surface with

cPnter oriqin hy W, let r < R, and denote )yI = h we have
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f(r) j y) 
2
X(d ) 

2
d R 2 n-l1+2Xd

r{iy 4R J '

(4.14)
> [fR d R/ , d. > (n-2+2X)r

n- 
2+2X f [v(R)-v(r)1

2
dw

w r h !W

where in the above expression Schwarz's inequality was used. Let R + - in (4.14).

Applying (4.8), (4.13) we have

f(r) > (n-2+2X)r
n - 2+ 2

A v2(r)dw - (n-2+2X) f y2X-lv2 dS (4.15)
Wlyl-r

Combining (4.12), (4.13), (4.15) we have

Jy~ y2-2v2 dIL18r2(8-a)
flyl r 12

Let

S 1yl2xc av 3v dy (4.17)
R r()yj<R ij Dyi aye

Integrating by parts and applying (4.9) we have

q (r) (f - f IYI vc - cos(N, y.)dS
S -y=R ylJ2r ij a'i

(4.18)

I yi2X-1vc av cos(N, y )dy

Jr~ylR j

where N is the normal directed toward -. When R = from (4.10), (4.13) we see tht

the left hand side of (4.18) has a limit, from (4.13), (4.16) applying Schwarz inequality

we prove easily that the last term in the right hand side of (4.18) has a limit when

R * , hence when R

f y I 2X - -- cos(N, y )dS (4.19)

lyI=R ij lv. 2
has a limit. If this limit value is a constant p 1 0, then applying (4.10), (4.13),

(4.15) when u large enough we have

p2 L IR jy[2lvi igrad vJIs)
2 

< L19 u f lyl
2 X- 1 

v2 riS
lyl=1' Il=l

lyl 
2
A(grad v) 

2
dS

lyLLu

( [-L19 uf(U)f'(j)f'(u)j/(n - 2 + 2)

Integratino we aet

p2(n-2-2%)lnlj/L1R < - I f () (R < R) (4.20)
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(4.13) contradicts (4.20) when R * -, hence the limit of (4.19) must be zero. Let

R + - in (4.18) and denoting g (r) by g(r) we have

g(r) -f lyl 2Xvc v cos(N, y.)dS - 2) f ly12-1 av dyJyj=r i y i jyl ;or

(4.21)

-2X yly 2 -I v(c - 6i) - cos(N, y )dy = 1 + I +I

y>r i ij 1 2 + 3

Applying (4.10), (4.13), (4.17) we have

g(r) = [1 + O(r- a)f(r) (4.22)

Applying Schwarz inequality to 11 and applying (4.10), (4.13), (4.14) we have
12 4 r f yY21-Iv2dS f 

y  
1

= y 2
X
[ci 

AV- y cos(N, yj)2 dS

nf(v) r 2Aa lvi- 0
0(lgrad vI)2

n-2+2X , 
•  l [- + dS <
lyI =r

[1 + 0(r- )]rf(r)/(n-2+2X) f ly,21(grad v)2 dS

Jy=r
(4.23)

= [l + O(r- e)] [rf(r)f'(r)]/(n-2+2X)

Integrate 12 by parts

2%+n-2d u f v 2k+n-2
I 2A-f 0 _L _,,1n v

r W 1 =

+ X(2X+n-2) f 
2
X+n 

3
d v

2
dw= (1 - + 0) r 2X-1

r n 2 Jyj=r (4.24)
2 y 2X-22

vd s + 0(1 - + 0) f v dy < 0Iyl=r
the validity of the above formula has used (12) and the relation

(2X+n-2 f v2dw) =
w0

From (4.15) we have

S IYI 
2
A-

2
-
2
av

2
dy 4 n-W'" 1 -

2
ad Iy- 

2  
(qrad v) 

2
dy (4.25)

lIy Ir r IyIr

4L 20r- 2f(r) .

From (4.10), (4.13), (4.25) and applying Schwarz inequality to estimate 13 we have

IT31 r L21 f ly 2X-l-lvI Igrad vidy - L 22r- f(r) (4.26)

Substituting (4.22), (4.23), (4.24), (4.26) into (4.21) we have

(I + 0(r-U)1f(r) 4 ([1 + ( r- )] (-rf(r)f'(r))!(n-2+?\)I/ 2

or
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f(r) 4 [1 + O(r- )1(-rf'(r)]/(n-2+2X)

Integrating we get r n n-2+2A O~ro
a )

f(r) c f~ro)( ) e ( L2 3 r2"n-2X (r > r(Q, ))

or

f Iy 
2 
-

28
(grad v)

2
dy < L23 r

2 8  (4.27)
lyf~r

Substituting (4.27) into (4.15) we have

f ly -n+2v2dS I L24
r- 

2 (4.28)I y I-r
Take y satisfying

0 < - 1, y < 26

In (4.2) taking X. - 1 2 + X, R = -, 8 - 1, substituting into (4.1) and applying (4.28)

we have

f lyl 2-n+2y (grad v) 2 dy 2 (grad v) 2dy 4 L2 5 f lyl-n+2yv2dy
1 yI ;2R lyj>R

)2R yI)R(4.29)

L26 
-

8  

4 L27
R-4B+2(

R
Note that (4.29) improves (4.13).

Repeating the above process we prove that

.r lyl 2-n+2 (grad v)
2
dy 4 L28r-2

Continuing in this way, after a finite number of steps we have

J (grad v) dy 4 L 29r (4.30)

We need the Following result of [21 extended to the n dimensional case:

i (grad v) dy ( L3 0 
r -  

(4.31)

Proof. Let S be a closed surface which lies in Q and contains r in its

interior. Tntegrating (1) and applying (9) we have
- 0  dS =n 1

_¢ 
- costN, x. )IS = N (4.32)

s I r
When xh chanqeq to xh + , the chanqed function will be denoted hv addino the

suhscrint c. Denote by S the surface S translated bv (...., -,, n .. , then

from (4.32) we have



_ P ( -x )£ cos(N, x )dS _ P- cos(N, x )dS = 0
S ax S ax i

C

Differentiating with respect to the parameter c and let c = 0 we have

r a. cos(N, x )dS = a~ cos(N, x )ds
s ij ax i  = ax i

L P Cie.,) cos(N, )dS - 0.
s e xi '€1 =

After linear transformation (S changes to S) we have

f ci21i cos(N, y )dS - 0 (4.33)

From (4.30) we see that we can take X 0 in (4.21), and it become (by using (4.33))

q(r) = y =r (v - vc cos(N, yj)dS (4.34)

where

v f vdS/mes S
Iy?=r

From Wirtinoer's inequality
2

(v -) 2 dS 4 r f (grad v) 2 _(v.2(

IyI=r n-7 Jy=r rd

anI (4.1r)), (4.34) we have

[n-i

g(r) 2 -
v

2 r [i 2
2r (v-v) (s 4- f fc cos(N, v) (is

7,I- ylr i

Y (qrad v)
2  y  

!
2  

+
IyI=r

2
2/-i +-- L31r-(rad v)

2 ds r fl + 0(r- ) J (qrad v) 2IS2 '- y=r 3N2n-lyl=r

= -r[1 + 0(r-0 )1/(2/n-1)g'(r)

Tnteqratinci we have

From (4.10), (4.17), (4.15) we obtain (4.31).
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Combining (4.30), (4.31) we obtain

f (grad v)2dy 4 L32
r n- 4 -2 6  

(6 > 0)

Substituting into (4.15) we have

f v2ds L33rn-3-26

Hence we have

S l v2-n+6 v2dy R r 2-n+6dr f v2 dS 4 L 34R-6
lyl*R R iyl-r

Reverting to the variable x we have

2-n+6 2 -6
f II - +lyl v dx 4 L 35R- (4.36)IxIl R

Let P - P-Ux where U is defined by (11) above, then from (4.36) we have

f iy,2-n+6(grad ')2 dx - nL3 5R-6 .

Let X be the inversion point of x about the unit sphere and let U = u, the above
R

formula becomes

f IXl-n-<6 (radX P)2dX 2 nL35u
6  

. (4.37)

Fixing a point x0c Q , without loss of generality we can assume temporarily that

-0, hence i(x) - -qx + f vhdxh, and combining with (2.17) we have
x I V,(x)l I L l3 xi

)?( ) 36)x

or

IPXI 4 L 361Xi (4.38)

From (4.37), (4.38) we have

P CW 2  in i x < v0(Q, r)

and the following Sobolev decomposition formula is valid [12):

P(X) = f C(Y)O(Y)dY + f yl 1-nWh(X, Y) dy (4.39)
I YI' i0  IYl u0

where C and wh are known bounded functions.

From (4.37) we have

f I Y1 II-n lrad I ' [[ l4I6-ndy f 2-n-6 (2ad , )2dV]
1/2

IYI u IYI~u IYl 'p
Hence the right hand side of (4.39) is a continuous and bounded function when Ixi 4 U0.

Therefore i(x)l exists, and

1, (x)j r L3q (4.40)
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Denote *(x) - () still by *(x). Then from (3.8), (3.22), (4.8), (4.40) we obtain

that the solution of (1), (8), (9), (11), (2.16) is bounded in E.

All the requirements of Leray-Schauder degree theory are satisfied, hence theorem 2 is

proved.

§5. Some properties of subsonic flow.

Theorem 3. The solution of problem (1), (8), (9), (10) is unique in the subsonic

range.

- (2) _ (1) 0Proof. From (2) we obtain that, the difference - P of two solutions

0(1), (2) satisfies the following equation

(2) (2) a 2-
a Cu .... u ) + b =0 (5.1)
ij 1 n ax iax k axk

() u 1) a ) u 2) (2 )
where ui = -ax.--- u" = -x and

ax. i ax

(2) (2) (1) (1) (2) (2)b=a u , ... , k+ 1l ",un )-ij 1l  ,.Uk-i
bk [aij u1 I )-a ... u u , (5.2)

(1) (1) ( 2) _ (1)] a2! 
1 )

uk .... ,u - uk ax ax.

From (8) we have

IaNr =0 *(5.3)

From the last section we have: (1)1, 1(2) (after subtraction of a suitable constant)

satisfy (2.6), hence we have

;(-) = 0 (5.4)

From (5.1), (5.2) by applying the maximum principle [5] we have, when F is not a

constant, then it cannot taken a positive maximum value or a negative minimum value i"

+ r, so combining with (5.4) we have j - 0. This proves the theorem.

Theorem 4. There exists a positive constant qc, such that when 0 1 U < q., the
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solution of problem (M), (8), (9), (10) exists in the subsonic range (this solution is

unique by theorem 3). Moreover, the function Q defined by (12) satisfy

Q(U) e C[0, q), and
c

lij Q(U) = qc (5.5)
U' c-O

The proof is divided into several points as follows:

1) Let (n } be any sequence of solutions of (1), (8), (9), (11), (12), (13) with

Q, U substituted by Qn' Un" If sup Qn < qc, then from §2, iii we have that W n isn

uniformly bounded in E, {0 n is compact by theorem 1, hence a limit function 0 exists,n

it is easy to prove that p is a solution of (1), (8), (9), (11), (12), (13) also and its

corresponding Q is a limit point of the sequence {Qn.

2) Take any solution of (1), (8), (9), (11), (12), (13), we define U = U(Qp)

by (11). Fixed Q(0 4 Q < qc) and denote the infimum of all U(Q,O) by V(Q), i.e. a

solution sequence {n I exists such that U(Q, n ) + V(Q). By 1), there exists a limit

function - (Q), which is the solution of (1), (8), (9), (11), (12), (13) (where we

substitute for U by V in (11)).

3) Let 0 < Q0 < qc, we prove that the interval [0, V(Q0 )] is covered by the set

of all (U,p) (0 < Q < Q0 ).

If this is false, i.e. constant U0  exists such that 0 < U0 < V(Q0 ) and the problem

(1), (8), (9), (10) (where in (10) we substitute for U by U0 ), has no solution in

0 < Q < Q0.

If there is a positive number sequence £ with £ + 
O

(n * ) such that (1), (8),n n

(9), (10), (where in (10) we substitute for U by U0 - En
)
, has a sequence of

solution n in 0 4 Q < Q 0" then by 1), the limit function is the solution of (1),

(8), (9), (10), where in (10) we substitute for U by UO, in 0 4 Q 4 Q0O and this

contradicts the above hypothesis.

Hence a constant U1 exists, satisfying 0 < U1 < U0 , such that the problem (1),

(8), (9), (10) has no solution in 0 4 Q ; Q0 when U 1 4 U r U0
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Now apply Leray-Schauder degree theory* to the set - < U < 1/2 (U0 + U ) in the

space E (for the relation of the element P e E and U see (2.6)). We obtain a

solution to problem (1), (8), (9), (11), (12) for any given 0 < Q 0 and this solution

possesses the following property: U defined from (9), (10) satisfies 0 4 U < U 0 . Hence

inf U(Q0) < V(Qo)

This contradicts the definition of V(Q0 ), which proves 3.

4) The function V(Q) is strictly monotone increasing in the interval (0, qc).

Otherwise there are 0 4 Q < Q2 
< 
q. such that V(Q1 ) > V(Q 2). From 3) we have, when

0 < Q < Q the set of U(Q, ) covers the interval [0, V(Q1 )], hence we have

Q0 E 10, QI and a 0 such that Un , 
) 
- V(Q2), contrary to theorem 3.

V(n) is strictly monotone increasing and has supremum qc' hence V(qc - 0) exists.

5) Let

qc = V(qc - 0)

From 3) we have, the set of U(Q) (0 r Q < q c
) 

covers the interval 0 < U < q C. In other

words, the solution of problem (1), (8), (9), (10) in the subsonic range exists when

0 - U < qc.

The above solution is also unique by theorem 3, hence the function

Q(U), 0 4 U < qc

is determined uniquely.

For fixed U0  in (0, qc), it lies in the number set U(Q(U0 ),%), hence we have

v(Q(U u0  (5.6)

From §2, iii, but substitute Q by Q0, positive constant K exists such that the
solution of (2.13) satisfyinq 1 <j 1K. Take F be the part of sphere ki !j <K+1
satisfying

- < U <, (Uri + U1 ) C; = ux, + :., D€I(-) = 0)

then (2.13) has no solution in the neiqhborhood of the boundary of F. From §2, ii we
have, the 1."iree of solution is I in F when n = n, ombine with 92, i and applyinq
Leray-Schauder i-Tree theory we obtain t ,at, when ( 1 , (1), (9), (9), (11), (12)
in F has at least one solution.

I ' i I i " i -3n-L



6) From the definition of q' there exists + qC - 0, such that V(Q ) q

If U satisfies 0 4 U 4 V(O) and Q(U) ) Qn . Combining with (5.6) we have

U > V(Qn), this contradicts U 4 V(Qn). Hence when 0 4 U 4 V(Qn). we have

0 4 Q(U) ' Qn 
< 

q c (5.7)

7) Let {U m satisfy 0 ( Um ' V(Qn), Um + U0, Q(Um ) + Q0. From (5.7) by applying

1) we obtain that the limit function V is the solution of (1), (8), (9), (10), where U,

Q are given by U0, Q0  in (10), (12) respectively. Applying theorem 3 we have

Q0 = Q(U0 ), in other words Q(U) £ C[O, V(Q n)]. Letting n + - we have

Q(U) co, q.

8) From the above points we see easily that lim Q(U) - q . then the functional
U4q-0

c

value of the continuous function Q(U) oscillates finitely in the interval (Q0 ,qc), and

every point in [Q0 ,qc] is the limit point of Q(U) when U + q - 0. Hence we have

U + q I U' + qc such that Q(U ) + Q0' Q(U) + 1/ 2 (Q + qc). By 1), the limit functions
m c m m

,V of corresponding solution sequences { m
}, F m.} are solutions of (1), (8), (9),

(11), (12), (13), where Q is given by Q0 and 
1
/2 (Q0 + qc) respectively. Hence

U(Q q U(

or the problem (1), (8), (9), (10) (substitute U by q) has at least two solutions inc

the subsonic range, which contradicts theorem 3, hence (5.5) is true.

The theorem is proved completely.

Condition (11) restricts the incoming flow is in the positive x1  direction. Now

remove this restriction by only assuming

U, = (u1 ... u-) (5.8)

is given. Recause (1), (8) is invariant under axis rotation, hence by theorems 3, 4 we

have, the solution of (1), (8), (9), (5.8) exists and is unique. Let

= u ixi + (5.9)

and regard i as a solution of the linear problem, by theorem 1 we have

" Un-2,2+ T < L39lU-1 
(5.10)
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Now prove that the solution of (1), (8), (9), (5.8) depends continuously on u by the

following sense.

Theorem 5. There exists a positive constant L40 , such that for any two vectors u' 1

., 2
u in the class

Iu= I 1 --
(the definition of function V see theorem 4) the corresponding solutions P(1), 4121 of

(1). (8), (9), (5.8) satisfy

1(2) (1) 1 CL 1U,2 _ u,1I
U, -121 (11Iu

' -u I (5.11)

n-2,2+ T  40

where the relation of V and p is given by (5.9).

Proof. Let P . d12) 4,(1, from (2) we obtain that w satisfies (5.1), (5.2).

From (81 we have

(= -u7 , 2
- u. 1 ) cos(N, xi,Nr i r

Applying (6), (5.10) it is easy to show that the bk defined from (5.2) satisfy conditions

(1.7), (1.55), (1.59), and from (5.10) we get (5.4). Hence from theorem 1 we have (5.11).

This completes the proof.

Theorem 6. For every non zero subsonic flow around a given profile, qmax cannot be taken

on a or at -. In other words, qmax can only be taken on r. And

q L4 1IuI 1 (5.12)

Proof. If qmTx > 0 is taken by P c (2, then after a rotation of axis we arrive at

grad uIp = (qmax' 0,...,0) and (1), (8) remain unchanged, hence u1 takes the maximum

value at P. And u, satisfies the elliptic equation (3.1), hence from the maximum

princiole (51 we have, u is a constant, i.e. u = 'max' hence u2 =.. un = 0. From

(8) we have 'max = 0. This is a contradiction.

From (5.10) and aoplying the result of (21, we have that Tmax cannot be taken at

(5.12) is a special case of (5.11) with u-
'
2 

= 
0. The rro)of of the theorem is thus

complete.

Theorem 7. ul exists for any subsonic flow in the neiahhorhooi of - ind (4.8) is

valid. An the subsonic flow in the whole space is uniform.
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Proof. For subsonic flow in the neighborhood of ., because (4.4), (4.5) and (4.6)

are valid, hence the existence of ul and the validity of (4.8) follow from [3].

Concerning subsonic flow in the whole space, ul .. exists by the above argument,

hence it is a special case of flow around profile, i.e. (4.32) is true for every closed

surface. Hence (5.10) is valid, and we can apoly theorem 6, i.e. except q is a constant,

q. cannot be taken by any finite point and -. And when q is a constant, u is a

constant vector by theorem 6, i.e. the flow is uniform.

The theorem is thus proved.

Acknowledgement. I would like to thank Professors R. L.Sachs and T. P. Liu for their
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